Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
उत्तर
In the given question, we need to prove tan2 A + cot2 A = sec2 A cosec2 A − 2
Now using `tan theta = sin theta/cos theta` and `cot theta = cos theta/sin theta` in LHS we get
`tan^2 A + cot^2 A = sin^2 A/cos^2 A + cos^2 A/sin^2 A`
`= (sin^4 A + cos^4 A)/(cos^2 A sin^2 A)`
`= ((sin^2 A)^2 + (cos^2 A)^2)/(cos^2 A sin^2 A)`
Further, using the identity `a^2 + b^2 = (a + b)^2 - 2ab` we get
`((sin^2 A)^2 + (cos^2 A)^2)/(cos^2 A sin^2 A) = ((sin^2 A + cos^ A)^2 - 2 sin^2 A cos^2 A)/(sin^2 A cos^2 A)`
`= ((1)^2 - 2sin^2 A cos^2 A)/(sin^2 A cos^2 A)`
`= 1/(sin^2 A cos^2 A) - (2 sin^2 A cos^2 A)/(sin^2 A cos^2 A`
`= cosec^2 A sec^2 A - 2`
Since L.H.S = R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
(i)` (1-cos^2 theta )cosec^2theta = 1`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
sin2θ + sin2(90 – θ) = ?
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`