हिंदी

If 3 sin θ = 4 cos θ, then sec θ = ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If 3 sin θ = 4 cos θ, then sec θ = ?

योग

उत्तर

3 sin θ = 4cos θ   .....[Given]

∴ `(sintheta)/(costheta) = 4/3`

∴ tan θ = `4/3`

We know that,

1 + tan2θ = sec2θ

∴  `1 + (4/3)^2` = sec2θ

∴ `1 + 16/9` = sec2θ

∴ sec2θ = `(9 + 16)/9`

∴ sec2θ = `25/9`

∴ sec θ = `5/3`   ......[Taking square root of both sides]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.2 (B)

संबंधित प्रश्न

Prove that `cosA/(1+sinA) + tan A =  secA`


Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.


Prove the following trigonometric identities.

`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`


Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2


Prove the following identities:

`1/(secA + tanA) = secA - tanA`


`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec  theta)`


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1


Prove the following identity : 

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


Prove the following identity : 

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.


If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to 


Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×