Advertisements
Advertisements
प्रश्न
If 3 sin θ = 4 cos θ, then sec θ = ?
उत्तर
3 sin θ = 4cos θ .....[Given]
∴ `(sintheta)/(costheta) = 4/3`
∴ tan θ = `4/3`
We know that,
1 + tan2θ = sec2θ
∴ `1 + (4/3)^2` = sec2θ
∴ `1 + 16/9` = sec2θ
∴ sec2θ = `(9 + 16)/9`
∴ sec2θ = `25/9`
∴ sec θ = `5/3` ......[Taking square root of both sides]
APPEARS IN
संबंधित प्रश्न
Prove that `cosA/(1+sinA) + tan A = secA`
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1