Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
उत्तर
We know that, `sin^2 theta + cos^2 theta = 1`
Multiplying numerator and denominator under the square root by `1 - cos theta)` we have
`sqrt((1 - cos theta)/(1 + cos theta)) = sqrt(((1 - cos theta)(1 - cos theta))/((1 + cos theta)(1 - cos theta)))`
`= sqrt((1 - cos theta)^2/(1 - cos^2 theta))`
`= sqrt((1 - cos theta)^2/sin^2 theta`
`= (1 - cos theta)/sin theta`
`= 1/sin theta - cos theta/sin theta`
`= cosec theta - cot theta`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
If sec θ = `25/7`, then find the value of tan θ.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
If 1 – cos2θ = `1/4`, then θ = ?
Prove that sin4A – cos4A = 1 – 2cos2A
Given that sin θ = `a/b`, then cos θ is equal to ______.
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ