Advertisements
Advertisements
प्रश्न
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
उत्तर
sinθ = `11/61` ...[Given]
We have,
sin2θ + cos2θ = 1
⇒ cos2θ = 1 − sin2θ
⇒ `cos^2θ = 1 - (11/61)^2`
⇒ `cos^2θ = 1 - 121/3721`
⇒ `cos^2θ = (3721 - 121)/3721`
⇒ `cos^2θ = 3600/3721`
⇒ `cosθ = sqrt((60/61)^2)` ...[Taking square root of both sides]
⇒ cosθ = `60/61`
Thus, the value of cosθ is `60/61`.
संबंधित प्रश्न
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
cos4 A − sin4 A is equal to ______.
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
If cos θ = `24/25`, then sin θ = ?
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
Given that sin θ = `a/b`, then cos θ is equal to ______.
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ