Advertisements
Advertisements
प्रश्न
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
उत्तर
(1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
= `(1 + sinθ/cosθ + 1/cosθ)(1 + cosθ/sinθ - 1/sinθ)`
= `((cosθ + sinθ + 1)/cosθ)((sinθ + cosθ - 1)/sinθ)`
= `((sinθ + cosθ)^2 - (1)^2)/(sinθcosθ)`
= `(sin^2θ + cos^2θ + 2sinθ cosθ - 1)/(sinθcosθ)`
= `(1 + 2sinθ cosθ - 1)/(sinθcosθ)`
= `(2sinθ cosθ)/(sinθ cosθ) = 2`
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
Write the value of cos1° cos 2°........cos180° .
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Find the value of sin 30° + cos 60°.