Advertisements
Advertisements
प्रश्न
Find the value of sin 30° + cos 60°.
उत्तर
sin 30° + cos 60° = `1/2 + 1/2`
= `(1 + 1)/2`
= `2/2`
= 1
∴ sin 30° + cos 60° = 1
APPEARS IN
संबंधित प्रश्न
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
If `sin theta = x , " write the value of cot "theta .`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ