Advertisements
Advertisements
प्रश्न
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
उत्तर
`(tan 65^circ)/(cot 25^circ)`
= `tan(90^circ - 25^circ)/cot 25^circ` (∵ `tan(90^circ - theta) = cot theta)`
= `cot 25^circ/cot 25^circ`
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
(i)` (1-cos^2 theta )cosec^2theta = 1`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If tan θ = `13/12`, then cot θ = ?
If 2sin2β − cos2β = 2, then β is ______.
sec θ when expressed in term of cot θ, is equal to ______.