Advertisements
Advertisements
प्रश्न
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
उत्तर
`(tan 65^circ)/(cot 25^circ)`
= `tan(90^circ - 25^circ)/cot 25^circ` (∵ `tan(90^circ - theta) = cot theta)`
= `cot 25^circ/cot 25^circ`
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
` tan^2 theta - 1/( cos^2 theta )=-1`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`