मराठी

Evaluate: Tan 65 ∘ Cot 25 ∘ - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate:

`(tan 65^circ)/(cot 25^circ)`

बेरीज

उत्तर

`(tan 65^circ)/(cot 25^circ)`

= `tan(90^circ - 25^circ)/cot 25^circ`  (∵ `tan(90^circ - theta) = cot theta)`

= `cot 25^circ/cot 25^circ`

= 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) Abroad Set(2)

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`sin theta/(1 - cos theta) =  cosec theta + cot theta`


Prove the following trigonometric identities.

sec6θ = tan6θ + 3 tan2θ sec2θ + 1


Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`


Prove the following identities:

`1/(tan A + cot A) = cos A sin A`


Prove the following identities:

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`


` tan^2 theta - 1/( cos^2 theta )=-1`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`


If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ? 


The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is 


Prove the following identity :

sinθcotθ + sinθcosecθ = 1 + cosθ  


Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`


Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A


Evaluate:
`(tan 65°)/(cot 25°)`


Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`


`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.

Activity:

`5/(sin^2theta) - 5cot^2theta`

= `square (1/(sin^2theta) - cot^2theta)`

= `5(square - cot^2theta)   ......[1/(sin^2theta) = square]`

= 5(1)

= `square`


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×