मराठी

The Value of (1 + Cot θ − Cosec θ) (1 + Tan θ + Sec θ) is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is 

पर्याय

  • 1

  • 2

  • 4

  • 0

MCQ

उत्तर

The given expression is 

`(1+cot θ-cosec θ )(1+tan θ+sec θ)`

Simplifying the given expression, we have 

`(1+cot θ-cosec θ)(1+tan θ+sec θ)` 

=`(1+cos θ/sin θ-1/sin θ)(1+sin θ/cos θ+1/cos θ)`

= `(sin θ+cos θ-1)/sin θxx (cos θ+sin θ+1)/cos θ` 

= `((sin θ+cos θ-1)(cos θ+sin θ+1))/(sin θcos θ)` 

=`({(sin θ+cos θ)-1}{(sin θ+cos θ)+1})/(sin θ cos θ)`

=`((sin θ+cos θ)^2-(1)^2)/(sin θ cos θ)`

=`((sin θ+cos θ)^2-(1)^2)/(sin θ cos θ)` 

=`((sin^2 θ+cos^2θ+2 sin θcos θ)-1)/(sin θ cos θ)` 

=`((sin ^2θ+cos^2θ)+2 sinθ cos θ-1)/(sin θcos θ)` 

= `(1+2 sin θ cosθ-1)/(sinθ cos θ)` 

=`( 2 sin θ cos θ)/(sin θ cos θ)` 

=`2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.4 | Q 9 | पृष्ठ ५७

संबंधित प्रश्‍न

Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`


If m = ` ( cos theta - sin theta ) and n = ( cos theta +  sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.


Write the value of cos1° cos 2°........cos180° .


If `sec theta = x ,"write the value of tan"  theta`.


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 


Prove the following identity :

tanA+cotA=secAcosecA 


Prove the following identity :

`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


Prove the following identity : 

`(1 + tan^2θ)sinθcosθ = tanθ`


Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


Prove that:  `1/(sec θ - tan θ) = sec θ + tan θ`.


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α


(1 + sin A)(1 – sin A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×