Advertisements
Advertisements
प्रश्न
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
पर्याय
1
2
4
0
उत्तर
The given expression is
`(1+cot θ-cosec θ )(1+tan θ+sec θ)`
Simplifying the given expression, we have
`(1+cot θ-cosec θ)(1+tan θ+sec θ)`
=`(1+cos θ/sin θ-1/sin θ)(1+sin θ/cos θ+1/cos θ)`
= `(sin θ+cos θ-1)/sin θxx (cos θ+sin θ+1)/cos θ`
= `((sin θ+cos θ-1)(cos θ+sin θ+1))/(sin θcos θ)`
=`({(sin θ+cos θ)-1}{(sin θ+cos θ)+1})/(sin θ cos θ)`
=`((sin θ+cos θ)^2-(1)^2)/(sin θ cos θ)`
=`((sin θ+cos θ)^2-(1)^2)/(sin θ cos θ)`
=`((sin^2 θ+cos^2θ+2 sin θcos θ)-1)/(sin θ cos θ)`
=`((sin ^2θ+cos^2θ)+2 sinθ cos θ-1)/(sin θcos θ)`
= `(1+2 sin θ cosθ-1)/(sinθ cos θ)`
=`( 2 sin θ cos θ)/(sin θ cos θ)`
=`2`
APPEARS IN
संबंधित प्रश्न
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Write the value of cos1° cos 2°........cos180° .
If `sec theta = x ,"write the value of tan" theta`.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
(1 + sin A)(1 – sin A) is equal to ______.