Advertisements
Advertisements
प्रश्न
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
उत्तर
L.H.S. = cosec4 A – cosec2 A
= cosec2 A (cosec2 A – 1)
R.H.S. = cot4 A + cot2 A
= cot2 A (cot2 A + 1)
= (cosec2 A – 1) cosec2 A
Thus, L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
If `sin theta = x , " write the value of cot "theta .`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Prove that:
tan (55° + x) = cot (35° – x)
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.