Advertisements
Advertisements
प्रश्न
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
उत्तर
LHS = `sqrt(2 + tan^2 θ + cot^2 θ)`
= `sqrt( tan^2 θ + cot^2θ + 2tan θ.cot θ)` ...[ ∵ tan θ.cot θ = 1 ]
= `sqrt( tan^2 θ + cot^2θ)`
= tan θ + cot θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
9 sec2 A − 9 tan2 A is equal to
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.