मराठी

Prove the Following Trigonometric Identities. (1 - Cos A)/(1 + Cos A) = (Cot a - Cosec A)^2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`

बेरीज

उत्तर १

We need to prove `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`

Now, rationalising the L.H.S, we get

`(1 - cos A)/(1 + cos A) = ((1 - cos A)/(1 +  cos A)) ((1 - cos A)/(1 - cos A))`

`= (1 - cos A)^2/(1 - cos^2 A)`      (using `a^2 - b^2 = (a + b)(a - b))`

` = (1 + cos^2 A - 2 cos A)/sin^2 A`    (Using `sin^2 theta = 1 - cos^2 theta`)

`= 1/sin^2 A + cos^2 A/sin^2 A - (2 cos A)/sin^2 A`

Using `cosec theta = 1/sin theta` and `cot theta = cos theta/sin theta` we get

`1/sin^2 A + cos^2 A/sin^2 A - (2 cos A)/sin^2 A = cosec^2 A + cot^2 A - 2 cot A cosec A`

` (cot A - cosec A)^2`    (Using `(a + b)^2 = a^2 + b^2 + 2ab`)

Hence proved.

shaalaa.com

उत्तर २

LHS = `(1 - cos θ)/(1 + cos θ)`

= `(1 - cos θ)/(1 + cos θ) xx (1 - cos θ)/(1 - cos θ)`

= `(1 - cos θ)^2/(1 - cos^2 θ)`

= `(1 - cos θ)^2/(sin^2 θ)`

= `[(1 - cosθ)/(sin θ)]^2`

= `[ 1/sinθ  - cosθ/sin θ ]^2`

= ( cosec θ - cot θ )2

= [ - (cot θ - cosec θ)]2

= (cot θ - cosec θ)2

= RHS

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Trigonometry - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 18 Trigonometry
Exercise 2 | Q 61.1
आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 40 | पृष्ठ ४५

संबंधित प्रश्‍न

Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


Prove the following identities:

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


Prove that:

`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


` tan^2 theta - 1/( cos^2 theta )=-1`


`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec  theta)`


`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`


Write the value of `(1 + cot^2 theta ) sin^2 theta`. 


Write the value of `(cot^2 theta -  1/(sin^2 theta))`. 


Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


What is the value of 9cot2 θ − 9cosec2 θ? 


If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9. 


If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =


Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`


Prove the following identity :

`cosA/(1 + sinA) = secA - tanA`


If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`


If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn 


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`


If x = h + a cos θ, y = k + b sin θ. 
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.


If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


Prove that sec2θ + cosec2θ = sec2θ × cosec2θ


Prove that sec2θ − cos2θ = tan2θ + sin2θ


Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×