Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
उत्तर १
We need to prove `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Now, rationalising the L.H.S, we get
`(1 - cos A)/(1 + cos A) = ((1 - cos A)/(1 + cos A)) ((1 - cos A)/(1 - cos A))`
`= (1 - cos A)^2/(1 - cos^2 A)` (using `a^2 - b^2 = (a + b)(a - b))`
` = (1 + cos^2 A - 2 cos A)/sin^2 A` (Using `sin^2 theta = 1 - cos^2 theta`)
`= 1/sin^2 A + cos^2 A/sin^2 A - (2 cos A)/sin^2 A`
Using `cosec theta = 1/sin theta` and `cot theta = cos theta/sin theta` we get
`1/sin^2 A + cos^2 A/sin^2 A - (2 cos A)/sin^2 A = cosec^2 A + cot^2 A - 2 cot A cosec A`
` (cot A - cosec A)^2` (Using `(a + b)^2 = a^2 + b^2 + 2ab`)
Hence proved.
उत्तर २
LHS = `(1 - cos θ)/(1 + cos θ)`
= `(1 - cos θ)/(1 + cos θ) xx (1 - cos θ)/(1 - cos θ)`
= `(1 - cos θ)^2/(1 - cos^2 θ)`
= `(1 - cos θ)^2/(sin^2 θ)`
= `[(1 - cosθ)/(sin θ)]^2`
= `[ 1/sinθ - cosθ/sin θ ]^2`
= ( cosec θ - cot θ )2
= [ - (cot θ - cosec θ)]2
= (cot θ - cosec θ)2
= RHS
Hence proved.
संबंधित प्रश्न
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
` tan^2 theta - 1/( cos^2 theta )=-1`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
What is the value of 9cot2 θ − 9cosec2 θ?
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
Prove that sec2θ − cos2θ = tan2θ + sin2θ
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1