Advertisements
Advertisements
प्रश्न
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
उत्तर
If is given that
x = h + a cos θ
and y = k + b sin θ
x - h = a cos θ ....(i)
y - k = b sin θ ....(ii)
The given equation is
`((x - h)/a)^2 + ((y - k)/(b))^2 = 1`
LHS = `((a cos θ)/a)^2 + ((b sin θ)/b)^2 ` ....(Putting the values of (i) and (ii)]
= cos2θ + sin2θ
= 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` = ______.
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A