Advertisements
Advertisements
प्रश्न
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
उत्तर
LHS = `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°`
= `sin (90° - 20°)/(cos 20°) + (cosec(90° - 20°))/(sec 70°) - 2 cos 70° xx cosec 20°`
= `(cos 20°)/(cos 20°) + (sec 70°)/(sec 70°) - 2 cos 70° xx cosec 20°`
= 1 + 1 - 2cos (90° - 20°) . cosec 20°
= 2 - 2 sin 20°. `1/sin 20°`
= 2 - 2
= 0
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.