मराठी

Prove the Following Trigonometric Identities. (1 + Sin Theta)/Cos Theta + Cos Theta/(1 + Sin Theta) = 2 Sec Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`

बेरीज

उत्तर १

We have to prove `(1 + sin theta)/cos theta + cos theta/1+ sin theta - 2 sec theta`

We know that, `sin^2 theta + cos^2 theta = 1`

Multiplying the denominator and numerator of the second term by `(1 - sin theta)` we have

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = (1 = sin theta)/cos theta =  (cos theta(1 - sin theta))/((1 + sin theta)(1 - sin theta))`

`= (1 + sin theta)/cos theta =  (cos theta (1 - sin theta))/(1-sin theta)`

`= (1 + sin theta)/cos theta + (cos theta(1 - sin theta))/cos^2 theta`

`= (1 + sin theta)/cos theta + (1 - sin theta)/cos theta`

`= (1 + sin theta +  1 -sin theta)/cos theta`

`= 2/cos theta`

`= 2 sec theta`

shaalaa.com

उत्तर २

LHS = `(1 + sin θ)/cos θ + cos θ/(1 + sin θ)`

= `(( 1 + sin θ)^2 + cos^2 θ)/(cos θ( 1 + sin θ))`

= `( 1 + sin^2 θ + 2 sin θ + cos^2 θ)/(cos θ( 1 + sin θ ))`

= `(1 + (sin^2θ + cos^2 θ) + 2 sin θ)/(cos θ(1 + sin θ))`

= `(1 + 1 + 2sin θ)/(cos θ(1 + sin θ))`

= `(2(1 + sin θ))/(cos θ(1 + sin θ))`

= 2 sec θ

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Trigonometry - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 18 Trigonometry
Exercise 2 | Q 60.3
आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 26 | पृष्ठ ४४

संबंधित प्रश्‍न

 

Evaluate

`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`

 

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`

 


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following identities:

(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1


If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2


Prove that:

`cosA/(1 + sinA) = secA - tanA`


`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`


Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`


Write the value of `3 cot^2 theta - 3 cosec^2 theta.`


\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identity : 

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove the following identity : 

`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`


If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that   `x^2 + y^2 + z^2 = r^2`


If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1


Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


Prove that  `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.


Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.

Activity:

L.H.S = `square`

= `cos^2theta xx square    .....[1 + tan^2theta = square]`

= `(cos theta xx square)^2`

= 12

= 1

= R.H.S


Prove that

sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A


Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)


If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.


Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×