Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
उत्तर १
We have to prove `(1 + sin theta)/cos theta + cos theta/1+ sin theta - 2 sec theta`
We know that, `sin^2 theta + cos^2 theta = 1`
Multiplying the denominator and numerator of the second term by `(1 - sin theta)` we have
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = (1 = sin theta)/cos theta = (cos theta(1 - sin theta))/((1 + sin theta)(1 - sin theta))`
`= (1 + sin theta)/cos theta = (cos theta (1 - sin theta))/(1-sin theta)`
`= (1 + sin theta)/cos theta + (cos theta(1 - sin theta))/cos^2 theta`
`= (1 + sin theta)/cos theta + (1 - sin theta)/cos theta`
`= (1 + sin theta + 1 -sin theta)/cos theta`
`= 2/cos theta`
`= 2 sec theta`
उत्तर २
LHS = `(1 + sin θ)/cos θ + cos θ/(1 + sin θ)`
= `(( 1 + sin θ)^2 + cos^2 θ)/(cos θ( 1 + sin θ))`
= `( 1 + sin^2 θ + 2 sin θ + cos^2 θ)/(cos θ( 1 + sin θ ))`
= `(1 + (sin^2θ + cos^2 θ) + 2 sin θ)/(cos θ(1 + sin θ))`
= `(1 + 1 + 2sin θ)/(cos θ(1 + sin θ))`
= `(2(1 + sin θ))/(cos θ(1 + sin θ))`
= 2 sec θ
Hence proved.
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1