Advertisements
Advertisements
प्रश्न
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
उत्तर
L.H.S. = (cosec A – sin A) (sec A – cos A) (tan A + cot A)
= `(1/sinA - sinA)(1/cosA - cosA)(1/tanA + tanA)`
= `((1 - sin^2A)/sinA)((1 - cos^2A)/cosA)(sinA/cosA + cosA/sinA)`
= `(cos^2A/sinA)(sin^2A/cosA)((sin^2A + cos^2A)/(sinA.cosA))`
= `(cos^2A/sinA)(sin^2A/cosA)((1)/(sinA.cosA))`
= 1 = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
(secA + tanA) (1 − sinA) = ______.
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to