Advertisements
Advertisements
प्रश्न
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
उत्तर
We have,
`cot ^2 -1/ sin^2 θ= cot ^2 θ-(1/ sinθ)^2`
= `cot ^2 θ-(cosec θ)^2`
= `cot^2 θ-cosec^2 θ`
We know that, `cot^2 θ-cosec^2 θ`
Therefore,
\[\cot^2 \theta - \frac{1}{\sin^2 \theta} = - 1\]
APPEARS IN
संबंधित प्रश्न
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
sin2θ + sin2(90 – θ) = ?
Given that sin θ = `a/b`, then cos θ is equal to ______.