मराठी

Write the Value of Cot 2 θ − 1 Sin 2 θ - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 

बेरीज

उत्तर

We have, 

`cot ^2 -1/ sin^2 θ= cot ^2 θ-(1/ sinθ)^2` 

                = `cot ^2 θ-(cosec θ)^2` 

               = `cot^2 θ-cosec^2 θ` 

We know that, `cot^2 θ-cosec^2 θ` 

Therefore,

\[\cot^2 \theta - \frac{1}{\sin^2 \theta} = - 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.3 | Q 9 | पृष्ठ ५५

संबंधित प्रश्‍न

If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p


Prove the following trigonometric identities.

`cos A/(1 - tan A) + sin A/(1 - cot A)  = sin A + cos A`


Prove the following trigonometric identities.

(1 + cot A − cosec A) (1 + tan A + sec A) = 2


Prove that

`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9. 


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 


Prove the following identity :

`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`


If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)


Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`


Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.


Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.


sin2θ + sin2(90 – θ) = ?


Given that sin θ = `a/b`, then cos θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×