मराठी

` (Sin Theta + Cos Theta )/(Sin Theta - Cos Theta ) + ( Sin Theta - Cos Theta )/( Sin Theta + Cos Theta) = 2/ ((1- 2 Cos^2 Theta))` - Mathematics

Advertisements
Advertisements

प्रश्न

` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`

उत्तर

LHS =  `(sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta)`

      =` ((sin theta + cos theta )^2 + ( sin theta - cos theta)^2)/(( sin theta - cos theta ) ( sin theta + cos theta))`

      =`( sin^2 theta + cos^2 theta + 2 sin theta   cos theta + sin^2 theta + cos^2 theta - 2 sin theta   cos theta)/((sin^2 theta - cos^2 theta))`

      =`(1+1)/((- cos^ 2theta )- cos^2 theta)    (∵ sin^ 2theta + cos^2 theta =1)`

     =`2/(1-2 cos^2 theta)`

     = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 1

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 1 | Q 24.2

संबंधित प्रश्‍न

Prove the following trigonometric identities:

`(1 - cos^2 A) cosec^2 A = 1`


Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2


Prove the following identities:

(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1


Prove the following identities:

`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`


Prove that:

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Prove the following identities:

sec4 A (1 – sin4 A) – 2 tan2 A = 1


`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`


Write the value of `4 tan^2 theta  - 4/ cos^2 theta`


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove the following identity : 

`(cosecθ)/(tanθ + cotθ) = cosθ`


If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`


Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cotθ.


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


If x = a tan θ and y = b sec θ then


If 3 sin θ = 4 cos θ, then sec θ = ?


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×