Advertisements
Advertisements
प्रश्न
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
उत्तर
LHS = `(sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta)`
=` ((sin theta + cos theta )^2 + ( sin theta - cos theta)^2)/(( sin theta - cos theta ) ( sin theta + cos theta))`
=`( sin^2 theta + cos^2 theta + 2 sin theta cos theta + sin^2 theta + cos^2 theta - 2 sin theta cos theta)/((sin^2 theta - cos^2 theta))`
=`(1+1)/((- cos^ 2theta )- cos^2 theta) (∵ sin^ 2theta + cos^2 theta =1)`
=`2/(1-2 cos^2 theta)`
= RHS
APPEARS IN
संबंधित प्रश्न
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
The value of sin2 29° + sin2 61° is
Prove the following identity :
tanA+cotA=secAcosecA
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
If cos A + cos2A = 1, then sin2A + sin4 A = ?
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
If cosA + cos2A = 1, then sin2A + sin4A = 1.
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.