हिंदी

` (Sin Theta + Cos Theta )/(Sin Theta - Cos Theta ) + ( Sin Theta - Cos Theta )/( Sin Theta + Cos Theta) = 2/ ((1- 2 Cos^2 Theta))` - Mathematics

Advertisements
Advertisements

प्रश्न

` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`

उत्तर

LHS =  `(sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta)`

      =` ((sin theta + cos theta )^2 + ( sin theta - cos theta)^2)/(( sin theta - cos theta ) ( sin theta + cos theta))`

      =`( sin^2 theta + cos^2 theta + 2 sin theta   cos theta + sin^2 theta + cos^2 theta - 2 sin theta   cos theta)/((sin^2 theta - cos^2 theta))`

      =`(1+1)/((- cos^ 2theta )- cos^2 theta)    (∵ sin^ 2theta + cos^2 theta =1)`

     =`2/(1-2 cos^2 theta)`

     = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 1

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 1 | Q 24.2

संबंधित प्रश्न

If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`


Prove that `cosA/(1+sinA) + tan A =  secA`


Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`


Prove the following identities:

(1 – tan A)2 + (1 + tan A)2 = 2 sec2A


Prove the following identities:

sec2 A + cosec2 A = sec2 A . cosec2 A


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove that:

`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


Write the value of `(cot^2 theta -  1/(sin^2 theta))`. 


If cosec θ − cot θ = α, write the value of cosec θ + cot α.


The value of sin2 29° + sin2 61° is


Prove the following identity :

tanA+cotA=secAcosecA 


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


If cos A + cos2A = 1, then sin2A + sin4 A = ?


Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`


If cosA + cos2A = 1, then sin2A + sin4A = 1.


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×