Advertisements
Advertisements
प्रश्न
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
उत्तर
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Consider `tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ`
⇒ `tan(90^circ - 80^circ) - tan(90^circ - 70^circ) tan30^circ tan70^circ tan80^circ`
⇒ `cot80^circ . cot70^circ .tan30^circ tan70^circ tan80^circ`
⇒ `tan30^circ = 1/sqrt(3)` [As tanθ cotθ = 1]
APPEARS IN
संबंधित प्रश्न
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ