Advertisements
Advertisements
प्रश्न
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
उत्तर
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
consider `sin42^circ sec48^circ + cos42^circ cosec48^circ`
⇒ `sin42^circ sec(90^circ - 42^circ) + cos42^circ cosec(90^circ - 42^circ)`
⇒ `sin42^circ . cosec42^circ + cos42^circ sec42^circ`
⇒ `sin42^circ . 1/sin42^circ + cos42^circ 1/cos42^circ`
⇒ 1 + 1 = 2
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ