Advertisements
Advertisements
प्रश्न
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
उत्तर
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
consider `sin42^circ sec48^circ + cos42^circ cosec48^circ`
⇒ `sin42^circ sec(90^circ - 42^circ) + cos42^circ cosec(90^circ - 42^circ)`
⇒ `sin42^circ . cosec42^circ + cos42^circ sec42^circ`
⇒ `sin42^circ . 1/sin42^circ + cos42^circ 1/cos42^circ`
⇒ 1 + 1 = 2
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
Write the value of cosec2 (90° − θ) − tan2 θ.
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`