Advertisements
Advertisements
प्रश्न
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
उत्तर
`cosA/(1+sinA)+tanA`
= `cosA/(1 + sinA) + sinA/cosA`
= `(cos^2A + sinA + sin^2A)/((1 + sinA)cosA)`
= `(1 + sinA)/((1 + sinA)cosA)`
= `(cos^3A + cosA sinA - sin^2A)/(cos^2A - sinAcosA)`
= `1/cosA`
= sec A
APPEARS IN
संबंधित प्रश्न
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
`(sec^2 theta-1) cot ^2 theta=1`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Prove that sin4A – cos4A = 1 – 2cos2A
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.