Advertisements
Advertisements
प्रश्न
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
उत्तर १
`cotA/(1 - tanA) + tanA/(1 - cotA)`
= `(1/tanA)/(1 - tanA) + tanA/(1 - 1/tanA)`
= `1/(tanA(1 - tanA)) + tan^2A/(tanA - 1)`
= `(1 - tan^3A)/(tanA(1 - tanA))`
= `((1 - tanA)(1 + tanA + tan^2A))/(tanA(1 - tanA))`
= `(1 + tanA + tan^2A)/tanA`
= cot A + 1 + tan A
उत्तर २
L.H.S. = `cotA/(1 - tanA) + tanA/(1 - cotA)`
= `((cosA/sinA))/((1/1 - sinA/cosA)) + ((sinA/cosA))/((1/1 - cosA/sinA))`
= `((cosA/sinA))/(((cosA - sinA)/cosA)) + ((sinA/cosA))/(((sinA - cosA)/sinA))`
= `(cos^2A)/(sinA(cosA - sinA)) + (sin^2A)/(cosA(sinA - cosA))`
= `(cos^2A)/(sinA(cosA - sinA)) - (sin^2A)/(cosA(cosA - sinA))`
= `(cos^3A - sin^3A)/(sinAcosA(cosA - sinA))`
= `(\cancel((cosA - sinA))(cos^2A + cosAsinA + sin^2A))/(sinAcosA\cancel((cosA - sinA)))`
= `(cos^2A + cosA sinA + sin^2A)/(sinAcosA)`
= `(\cancel(cos^2A))/(sinA\cancel(cosA)) + (\cancel(cosAsinA))/(\cancel(sinAcosA)) + (\cancel(sin^2A))/(\cancel(sinA)cosA)`
= cos A + 1 + tan A
= 1 + tan A + cot A
APPEARS IN
संबंधित प्रश्न
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
If sec θ = `25/7`, then find the value of tan θ.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
(sec θ + tan θ) . (sec θ – tan θ) = ?