Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
उत्तर
`(1 - cosA)/sinA + sinA/(1 - cosA)`
= `((1 - cosA)^2 + sin^2A)/(sinA(1 - cosA))`
= `(1 + cos^2A - 2cosA + sin^2A)/(sinA(1 - cosA))`
= `(2 - 2cosA)/(sinA(1 - cosA))`
= `(2(1 - cosA))/(sinA(1 - cosA))`
= 2 cosec A
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
If `sin theta = x , " write the value of cot "theta .`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
If tan θ × A = sin θ, then A = ?
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ