Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
उत्तर
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
= L.H.S.
=`(tan"A"+tan"B")/(cot"A"+cot"B")`
= `(tan"A"+tan"B")/(1/tanA+1/tanB`
= `(tan"A"+tan"B")/((tan"A"+tan"B")/(tan"A".tan"B"))`
= `((tan"A"+tan"B")(tan"A".tan"B"))/(tan"A"+tan"B")`
= tan A tan B
= R.H.S.
Hence, proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
What is the value of (1 + cot2 θ) sin2 θ?
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.