Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
उत्तर
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
= L.H.S.
=`(tan"A"+tan"B")/(cot"A"+cot"B")`
= `(tan"A"+tan"B")/(1/tanA+1/tanB`
= `(tan"A"+tan"B")/((tan"A"+tan"B")/(tan"A".tan"B"))`
= `((tan"A"+tan"B")(tan"A".tan"B"))/(tan"A"+tan"B")`
= tan A tan B
= R.H.S.
Hence, proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Choose the correct alternative:
tan (90 – θ) = ?
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1