Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
tan (90 – θ) = ?
विकल्प
sin θ
cos θ
cot θ
tan θ
उत्तर
cot θ
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.