हिंदी

Choose the correct alternative: tan (90 – θ) = ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

tan (90 – θ) = ?

विकल्प

  • sin θ

  • cos θ

  • cot θ

  • tan θ

MCQ

उत्तर

cot θ

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.1 (A)

संबंधित प्रश्न

Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`


Prove the following trigonometric identities.

`(cot A + tan B)/(cot B + tan A) = cot A tan B`


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


Prove the following identities:

`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`


`cot theta/((cosec  theta + 1) )+ ((cosec  theta +1 ))/ cot theta = 2 sec theta `


If m = ` ( cos theta - sin theta ) and n = ( cos theta +  sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.


If `sqrt(3) sin theta = cos theta  and theta ` is an acute angle, find the value of θ .


What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]


Prove the following identity : 

`((1 + tan^2A)cotA)/(cosec^2A) = tanA`


If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn 


Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle. 


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


Prove that `"cosec"  θ xx sqrt(1 - cos^2theta)` = 1


If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×