Advertisements
Advertisements
प्रश्न
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
विकल्प
tan2θ
1
cot2θ
0
उत्तर
1
Explanation;
Hint:
sin2θ + `1/(1 + tan^2 theta) = sin^2 theta + 1/(sec^2 theta)`
= sin2θ + cos2θ
= 1
APPEARS IN
संबंधित प्रश्न
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Define an identity.
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Find the value of sin 30° + cos 60°.
If x = a tan θ and y = b sec θ then
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`