Advertisements
Advertisements
प्रश्न
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
उत्तर १
L.H.S = `(tan^2 theta)/(sec theta - 1)^2 `
`= (sec^2 theta - 1)/(sec theta - 1)^2`
`= ((sec theta - 1)(sec theta + 1))/(sec theta - 1)^2`
`= (sec theta + 1)/(sec theta - 1)`
`= (1/cos theta + 1)/(1/cos theta - 1)`
`= ((1 + cos theta)/cos theta)/((1 - cos theta)/cos theta)`
`= (1 + cos theta)/(1 - cos theta)`
= R.H.S
उत्तर २
L.H.S = `(tan^2 θ)/(sec θ - 1)^2 `
= `(sin^2 θ/cos^2 θ)/(1/cos θ - 1)^2 .....( ∵ tan θ = sin θ /cos θ )`
= `(sin^2 θ/cos^2 θ)/((1/cos θ - 1)^2/(cos^2 θ)) ....( ∵ sec θ = 1/cos θ) `
= `(sin^2 θ)/( 1 - cos θ)^2 ....( ∵ sin^2 θ = 1 - cos^2 θ) `
= `( 1 - cos^2 θ)/( 1 - cos θ)^2`
= `( 1 - cos θ)( 1 + cos θ)/( 1 - cos θ)^2` ....( ∵ a2 - b2 = (a + b)(a - b))
= `( 1 + cos θ)/( 1 - cos θ)`
= RHS.
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Write the value of cosec2 (90° − θ) − tan2 θ.
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`