Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
उत्तर
We need to prove `(1 + cos A)/sin A = sin A/(1 - cos A)`
Now, multiplying the numerator and denominator of LHS by `1 - cos A` we get
`(1 + cos A)/sin A = (1 + cos A)/sin A xx (1 - cos A)/(1 - cos A)`
Further using the identity, `a^2 - b^2 = (a + b)(a - b)` we get
`(1 + cos A)/sin A xx (1 - cos A)/(1 - cos A) = (1 - cos^2 A)/(sin A (1- cos A))`
`= sin^2 A/(sin A(1 - cos A))` (Using `sin^2 theta + cos^2 theta = 1`)
`= sin A/(1 - cos A)`
Hence proved
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α