Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
उत्तर
We need to prove `(1 + cos A)/sin A = sin A/(1 - cos A)`
Now, multiplying the numerator and denominator of LHS by `1 - cos A` we get
`(1 + cos A)/sin A = (1 + cos A)/sin A xx (1 - cos A)/(1 - cos A)`
Further using the identity, `a^2 - b^2 = (a + b)(a - b)` we get
`(1 + cos A)/sin A xx (1 - cos A)/(1 - cos A) = (1 - cos^2 A)/(sin A (1- cos A))`
`= sin^2 A/(sin A(1 - cos A))` (Using `sin^2 theta + cos^2 theta = 1`)
`= sin A/(1 - cos A)`
Hence proved
APPEARS IN
संबंधित प्रश्न
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Write the value of tan1° tan 2° ........ tan 89° .
From the figure find the value of sinθ.
What is the value of (1 − cos2 θ) cosec2 θ?
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
sec4 A − sec2 A is equal to
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
Choose the correct alternative:
cos 45° = ?
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
sin(45° + θ) – cos(45° – θ) is equal to ______.
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ