Advertisements
Advertisements
प्रश्न
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
उत्तर
sin θ (1 + sin2 θ) = cos2 θ
sin θ (1 + 1 – cos2 θ) = cos2 θ
sin θ (2 – cos2 θ) = cos2 θ
Squaring on both sides,
sin2 θ (2 – cos2 θ)2 = cos4 θ
(1 – cos2 θ) (4 + cos4 θ – 4 cos2 θ) = cos4 θ
4 cos4 θ – 4 cos2 θ – cos6 θ + 4 cos4 θ = cos4 θ
4 + 5 cos4 θ – 8 cos2 θ – cos6 θ = cos4 θ
– cos6 θ + 5cos4 θ – cos4 θ – 8 cos2 θ = – 4
– cos6 θ + 4cos4 θ – 8 cos2 θ = – 4
cos6 θ – 4cos4 θ + 8 cos2 θ = 4
Hence it is proved
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ