Advertisements
Advertisements
Question
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
Solution
sin θ (1 + sin2 θ) = cos2 θ
sin θ (1 + 1 – cos2 θ) = cos2 θ
sin θ (2 – cos2 θ) = cos2 θ
Squaring on both sides,
sin2 θ (2 – cos2 θ)2 = cos4 θ
(1 – cos2 θ) (4 + cos4 θ – 4 cos2 θ) = cos4 θ
4 cos4 θ – 4 cos2 θ – cos6 θ + 4 cos4 θ = cos4 θ
4 + 5 cos4 θ – 8 cos2 θ – cos6 θ = cos4 θ
– cos6 θ + 5cos4 θ – cos4 θ – 8 cos2 θ = – 4
– cos6 θ + 4cos4 θ – 8 cos2 θ = – 4
cos6 θ – 4cos4 θ + 8 cos2 θ = 4
Hence it is proved
APPEARS IN
RELATED QUESTIONS
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
Write the value of cos1° cos 2°........cos180° .
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.