English

Θθθθθcosecθ1sin2θ-1cos2θ-1tan2θ-1cot2θ-1sec2θ-1cosec2θ=-3, then find the value of θ. - Geometry Mathematics 2

Advertisements
Advertisements

Question

`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.

Sum

Solution

`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`

cosec2θ − sec2θ  − cot2θ  − tan2θ − cos2θ − sin2θ  = −3   ...`[because sintheta = 1/(cosectheta), costheta = 1/(sectheta), tantheta = 1/(cottheta)]`

⇒ 1 + cot2θ − 1 − tan2θ − cot2θ − tan2θ − 1 = −3

⇒ − 2 tan2θ − 1 = − 3   ...`[(because 1 + cot^2theta = cosec^2theta), (1 + sec^2theta = tan^2theta), (sin^2theta + cos^2theta = 1)]`

⇒ −2 tan2θ = − 3 + 1

⇒ −2 tan2θ = −2

⇒ tan2θ = 1

⇒ tan θ = 1   ...(Taking square root on both sides)

⇒ tan θ = tan 45°

∴ θ = 45°

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (March) Official

RELATED QUESTIONS

Prove the following trigonometric identities:

`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `


If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.


`(1+tan^2A)/(1+cot^2A)` = ______.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


Prove the following trigonometric identities.

`sin theta/(1 - cos theta) =  cosec theta + cot theta`


Prove the following trigonometric identities.

`((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following trigonometric identities.

(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 


Without using trigonometric table , evaluate : 

`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


Evaluate:
`(tan 65°)/(cot 25°)`


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


If tan θ × A = sin θ, then A = ?


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


Prove that sec2θ + cosec2θ = sec2θ × cosec2θ


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×