Advertisements
Advertisements
Question
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Solution
We have to prove (sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
We know that `sec^2 theta A - tan^2 theta A = 1`
So, we have
(sec A + tan A - 1)(sec A - tan A + 1) = {sec A + (tan A - 1)}{sec A - (tan A - 1)}
`= sec^2 A - (tan A - 1)^2`
`= sec^2 A - (tan^2 A - 2 tan A + 1)`
`= (sec^2 A - tan^2 A) + 2 tan A - 1`
So we have
(sec A + tan A - 1)(sec A - tan A + 1) = 1 + tan A - 1
= 2 tan A
Hence proved.
APPEARS IN
RELATED QUESTIONS
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
Write the value of tan1° tan 2° ........ tan 89° .
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
Given that sin θ = `a/b`, then cos θ is equal to ______.