Advertisements
Advertisements
Question
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ
Solution
L.H.S. = `sqrt((1 + sin theta)/(1 - sin theta)`
= `sqrt(((1 + sin theta)(1 + sin theta))/((1 - sin theta)(1 + sin theta))` ...[conjugate (1 − sin θ)]
= `sqrt((1 + sin theta)^2/(1 - sin^2 theta)`
= `sqrt((1 + sin theta)^2/(cos^2 theta)`
= `(1 + sin theta)/(cos theta)`
= `1/cos theta + sin theta/cos theta`
= sec θ + tan θ
L.H.S. = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
tan θ × `sqrt(1 - sin^2 θ)` is equal to: