English

`Tan Theta/(1+ Tan^2 Theta)^2 + Cottheta/(1+ Cot^2 Theta)^2 = Sin Theta Cos Theta` - Mathematics

Advertisements
Advertisements

Question

`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`

Solution

𝐿𝐻𝑆 = `(tan theta)/(1+tan^2 theta )^2 +( cot theta )/(1+cot^2 theta)^2`

        =`tan theta/ ((sec^2  theta)^2) + cot theta/((cosec^2  theta) ^2)`

        =`tan theta / sec^4 theta + cottheta/(cosec^4  theta)`

        =`sin theta/cos theta xx cos^4 theta + cos theta/sin theta xx sin ^4 theta`

      =` sin  theta  cos  ^3 theta + cos theta sin  ^3 theta`

     =`sin theta cos theta ( cos^2 theta + sin ^2 theta)`

    =`sin theta cos theta`

    = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 16

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`

 


Prove the following trigonometric identities.

`sin^2 A + 1/(1 + tan^2 A) = 1`


`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`


Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A


`cot^2 theta - 1/(sin^2 theta ) = -1`a


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then 


Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`


Prove the following identity :

`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`


Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.


Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


Prove the following identities.

sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


Prove that sec2θ + cosec2θ = sec2θ × cosec2θ


If 2sin2β − cos2β = 2, then β is ______.


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×