Advertisements
Advertisements
Question
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
Solution
𝐿𝐻𝑆 = `(tan theta)/(1+tan^2 theta )^2 +( cot theta )/(1+cot^2 theta)^2`
=`tan theta/ ((sec^2 theta)^2) + cot theta/((cosec^2 theta) ^2)`
=`tan theta / sec^4 theta + cottheta/(cosec^4 theta)`
=`sin theta/cos theta xx cos^4 theta + cos theta/sin theta xx sin ^4 theta`
=` sin theta cos ^3 theta + cos theta sin ^3 theta`
=`sin theta cos theta ( cos^2 theta + sin ^2 theta)`
=`sin theta cos theta`
= RHS
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
`cot^2 theta - 1/(sin^2 theta ) = -1`a
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
If 2sin2β − cos2β = 2, then β is ______.
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.