English

`Prove the Following Trigonometric Identities. `(Sec a - Tan A)^2 = (1 - Sin A)/(1 + Sin A) - Mathematics

Advertisements
Advertisements

Question

`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`

Solution

We need to prove  `(sec A - tan A)^2  = (1 - sin A)/(1 +  sin A)`

Here, we will first solve the L.H.S.

Now using `sec theta = 1/cos theta` and `tan theta = sin theta/cos theta` we get

`(sec A - tan A)^2 = (1/cos A - sin A/cos A)^2`

`= ((1 -sin A)/cos A)^2`

`= (1 - sin A)^2/(cos A)^2`

Further using the property  `sin^2 theta + cos^2 theta = 1` we get

`((1 - sin A)^2/(cos A)) = (1 - sin A)^2/(1 - sin^2 A)`

`= (1 - sin A)^2/((1 - sin A)(1 + sin A))`            (using `a^2 - b^2 = (a + b)(a - b))`

`= (1 - sin A)/(1 +  sin A)`

henc e proved

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 45]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 39 | Page 45

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`

 


Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`


Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove the following identities:

`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`


If `cosec  theta = 2x and cot theta = 2/x ," find the value of"  2 ( x^2 - 1/ (x^2))`


Write the value of cosec2 (90° − θ) − tan2 θ. 


2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to 


Simplify 

sin A `[[sinA   -cosA],["cos A"  " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


Prove the following identity :

`(cotA + tanB)/(cotB + tanA) = cotAtanB`


Prove the following Identities :

`(cosecA)/(cotA+tanA)=cosA`


prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`


If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


Choose the correct alternative:

1 + cot2θ = ? 


If cos A + cos2A = 1, then sin2A + sin4 A = ?


If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×