Advertisements
Advertisements
Question
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Solution
We need to prove `(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Here, we will first solve the L.H.S.
Now using `sec theta = 1/cos theta` and `tan theta = sin theta/cos theta` we get
`(sec A - tan A)^2 = (1/cos A - sin A/cos A)^2`
`= ((1 -sin A)/cos A)^2`
`= (1 - sin A)^2/(cos A)^2`
Further using the property `sin^2 theta + cos^2 theta = 1` we get
`((1 - sin A)^2/(cos A)) = (1 - sin A)^2/(1 - sin^2 A)`
`= (1 - sin A)^2/((1 - sin A)(1 + sin A))` (using `a^2 - b^2 = (a + b)(a - b))`
`= (1 - sin A)/(1 + sin A)`
henc e proved
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Write the value of cosec2 (90° − θ) − tan2 θ.
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
Choose the correct alternative:
1 + cot2θ = ?
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.