Advertisements
Advertisements
प्रश्न
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
उत्तर
We need to prove `(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Here, we will first solve the L.H.S.
Now using `sec theta = 1/cos theta` and `tan theta = sin theta/cos theta` we get
`(sec A - tan A)^2 = (1/cos A - sin A/cos A)^2`
`= ((1 -sin A)/cos A)^2`
`= (1 - sin A)^2/(cos A)^2`
Further using the property `sin^2 theta + cos^2 theta = 1` we get
`((1 - sin A)^2/(cos A)) = (1 - sin A)^2/(1 - sin^2 A)`
`= (1 - sin A)^2/((1 - sin A)(1 + sin A))` (using `a^2 - b^2 = (a + b)(a - b))`
`= (1 - sin A)/(1 + sin A)`
henc e proved
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
(i)` (1-cos^2 theta )cosec^2theta = 1`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Write the value of tan1° tan 2° ........ tan 89° .
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
If sec θ + tan θ = x, then sec θ =
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.