मराठी

`Prove the Following Trigonometric Identities. `(Sec a - Tan A)^2 = (1 - Sin A)/(1 + Sin A) - Mathematics

Advertisements
Advertisements

प्रश्न

`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`

उत्तर

We need to prove  `(sec A - tan A)^2  = (1 - sin A)/(1 +  sin A)`

Here, we will first solve the L.H.S.

Now using `sec theta = 1/cos theta` and `tan theta = sin theta/cos theta` we get

`(sec A - tan A)^2 = (1/cos A - sin A/cos A)^2`

`= ((1 -sin A)/cos A)^2`

`= (1 - sin A)^2/(cos A)^2`

Further using the property  `sin^2 theta + cos^2 theta = 1` we get

`((1 - sin A)^2/(cos A)) = (1 - sin A)^2/(1 - sin^2 A)`

`= (1 - sin A)^2/((1 - sin A)(1 + sin A))`            (using `a^2 - b^2 = (a + b)(a - b))`

`= (1 - sin A)/(1 +  sin A)`

henc e proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 39 | पृष्ठ ४५

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`

[Hint: Write the expression in terms of sinθ and cosθ]


Prove that `cosA/(1+sinA) + tan A =  secA`


Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove the following identities:

(1 + cot A – cosec A)(1 + tan A + sec A) = 2


Prove the following identities:

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.


If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A


(i)` (1-cos^2 theta )cosec^2theta = 1`


`(1-cos^2theta) sec^2 theta = tan^2 theta`


If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`


Write the value of tan1° tan 2°   ........ tan 89° .


If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ. 


If sec θ + tan θ = x, then sec θ =


Prove the following identity : 

`sec^4A - sec^2A = sin^2A/cos^4A`


Prove the following identity :

`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`


Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×