Advertisements
Advertisements
प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
उत्तर
L.H.S
= `(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) `
= `(sintheta/costheta)/(1-costheta/sintheta) + (costheta/sintheta)/(1-sintheta/costheta)`
= `(sintheta/costheta)/((sintheta-costheta)/(sintheta))+ (costheta/sintheta)/((costheta-sintheta)/costheta)`
= `(sin^2theta)/(costheta(sintheta-costheta)) - (cos^2theta)/(sintheta(sintheta-costheta))`
= `1/(sintheta - costheta)[(sin^2theta)/costheta - cos^2theta/sintheta]`
= `(1/(sintheta-costheta))[(sin^3theta-cos^3theta)/(sinthetacostheta)]`
= `(1/(sintheta-costheta))[((sintheta-costheta)(sin^2theta+cos^2theta+sinthetacostheta))/(sinthetacostheta)]`
= `((1+sinthetacostheta))/((sinthetacostheta))`
= sec θ cosec θ + 1
= R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
`(1 + cot^2 theta ) sin^2 theta =1`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
Write the value of tan1° tan 2° ........ tan 89° .
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
If sec θ = `25/7`, then find the value of tan θ.
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
(1 – cos2 A) is equal to ______.