मराठी

Prove the following identities, where the angles involved are acute angles for which the expressions are defined: tanθ1-cotθ+cotθ1-tanθ=1+secθcosecθ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`

[Hint: Write the expression in terms of sinθ and cosθ]

बेरीज

उत्तर

L.H.S

= `(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) `

= `(sintheta/costheta)/(1-costheta/sintheta) + (costheta/sintheta)/(1-sintheta/costheta)`

= `(sintheta/costheta)/((sintheta-costheta)/(sintheta))+ (costheta/sintheta)/((costheta-sintheta)/costheta)`

= `(sin^2theta)/(costheta(sintheta-costheta)) - (cos^2theta)/(sintheta(sintheta-costheta))`

= `1/(sintheta - costheta)[(sin^2theta)/costheta - cos^2theta/sintheta]`

= `(1/(sintheta-costheta))[(sin^3theta-cos^3theta)/(sinthetacostheta)]`

= `(1/(sintheta-costheta))[((sintheta-costheta)(sin^2theta+cos^2theta+sinthetacostheta))/(sinthetacostheta)]`

= `((1+sinthetacostheta))/((sinthetacostheta))`

= sec θ cosec θ + 1

= R.H.S

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction to Trigonometry - Exercise 8.4 [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 8 Introduction to Trigonometry
Exercise 8.4 | Q 5.03 | पृष्ठ १९४

संबंधित प्रश्‍न

Prove the following trigonometric identities:

`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


Without using trigonometric tables evaluate

`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`


Prove the following trigonometric identities.

`tan theta + 1/tan theta = sec theta cosec theta`


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following trigonometric identities.

`(tan A + tan B)/(cot A + cot B) = tan A tan B`


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`


Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


Prove that

`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`


`(1 + cot^2 theta ) sin^2 theta =1`


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.


If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`


If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`


Write the value of tan1° tan 2°   ........ tan 89° .


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 


If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =


Prove the following identity :

`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


Prove the following identity : 

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


If sec θ = `25/7`, then find the value of tan θ.


Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ


Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1


Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1


Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1


(1 – cos2 A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×