Advertisements
Advertisements
प्रश्न
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
उत्तर
We have ,
`cot theta = 1/ sqrt(3)`
⇒` cot theta = cot (π/3)`
⇒`theta = π/3`
Now ,
`((1- cos^2 theta))/((2 - sin^2 theta))`
= `(1- cos ^2(π/3))/( 2 - sin ^2 ( π/ 3))`
=` (1- (1/2)^2)/(2-(sqrt(3)/2)^2)`
=` ((1/1 - 1/4))/((2/1-3/4))`
=`((3/4))/((5/4))`
=`3/5`
APPEARS IN
संबंधित प्रश्न
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
(i)` (1-cos^2 theta )cosec^2theta = 1`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Find the value of ( sin2 33° + sin2 57°).
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.