मराठी

If `Cot Theta = 1/ Sqrt(3) , "Write the Value Of" ((1- Cos^2 Theta))/((2 -sin^2 Theta))` - Mathematics

Advertisements
Advertisements

प्रश्न

If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`

उत्तर

We have , 

 `cot theta = 1/ sqrt(3)`

  ⇒` cot theta = cot (π/3)`

  ⇒`theta = π/3`

 Now , 

     `((1- cos^2 theta))/((2 - sin^2 theta))`

    = `(1- cos ^2(π/3))/( 2 - sin ^2 ( π/ 3))` 

    =` (1- (1/2)^2)/(2-(sqrt(3)/2)^2)`

    =` ((1/1 - 1/4))/((2/1-3/4))`

    =`((3/4))/((5/4))`

    =`3/5`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 3

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 3 | Q 22

संबंधित प्रश्‍न

Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


(i)` (1-cos^2 theta )cosec^2theta = 1`


`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`


If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`


If `sqrt(3) sin theta = cos theta  and theta ` is an acute angle, find the value of θ .


Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Without using trigonometric identity , show that :

`sin(50^circ + θ) - cos(40^circ - θ) = 0`


Find the value of ( sin2 33° + sin2 57°).


Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`


Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.


`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×