मराठी

Prove the following identities, where the angles involved are acute angles for which the expressions are defined: 1+sinA1-sinA=secA+tanA - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`

बेरीज

उत्तर

L.H.S

= `sqrt((1+sinA)/(1-sinA))`

= `sqrt(((1+sinA)(1+sinA))/((1-sinA)(1+sinA))`

= `(1+sinA)/(sqrt(1-sin^2A))`

= `(1+sinA)/sqrt(cos^2A)`

= `(1+sinA)/cosA`

= secA + tan A

= `1/cos A + sin A/cos A`

= R.H.S

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction to Trigonometry - Exercise 8.4 [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 8 Introduction to Trigonometry
Exercise 8.4 | Q 5.06 | पृष्ठ १९४

संबंधित प्रश्‍न

Prove the following identities:

`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`

`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`

`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`


If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,


If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


Prove the following trigonometric identities.

`sin^2 A + 1/(1 + tan^2 A) = 1`


Prove the following trigonometric identities.

`sin theta/(1 - cos theta) =  cosec theta + cot theta`


Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`


Prove the following trigonometric identities

sec4 A(1 − sin4 A) − 2 tan2 A = 1


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`


If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


`(cos  ec^theta + cot theta )/( cos ec theta - cot theta  ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta  cot theta`


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`


If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`


Write the value of `3 cot^2 theta - 3 cosec^2 theta.`


If  `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`


What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]


If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =


If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =


Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Without using trigonometric table , evaluate : 

`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`


If sin θ = `1/2`, then find the value of θ. 


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`


Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.


Choose the correct alternative:

`(1 + cot^2"A")/(1 + tan^2"A")` = ?


`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.

Activity:

`5/(sin^2theta) - 5cot^2theta`

= `square (1/(sin^2theta) - cot^2theta)`

= `5(square - cot^2theta)   ......[1/(sin^2theta) = square]`

= 5(1)

= `square`


If cos θ = `24/25`, then sin θ = ?


Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ


Prove that sec2θ − cos2θ = tan2θ + sin2θ


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.


Complete the following activity to prove:

cotθ + tanθ = cosecθ × secθ

Activity: L.H.S. = cotθ + tanθ

= `cosθ/sinθ + square/cosθ`

= `(square + sin^2theta)/(sinθ xx cosθ)`

= `1/(sinθ xx  cosθ)` ....... ∵ `square`

= `1/sinθ xx 1/cosθ`

= `square xx secθ`

∴ L.H.S. = R.H.S.


Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×