Advertisements
Advertisements
प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
उत्तर
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`
Using the identity cosec2A = 1 + cot2A,
L.H.S = `(cos A-sinA+1)/(cosA+sinA-1)`
= `(cosA/sinA-sinA/sinA+1/sinA)/(cosA/sinA+sinA/sinA+1/sinA)`
= `(cotA-1+cosec A)/(cotA+1-cosec A)`
= `({(cotA)-(1-cosec A)}{(cotA)-(1-cosec A)})/({(cotA)+(1-cosec A)}{(cotA)-(1-cosec A)})`
= `(cot A - 1 + cosecA)^2/((cotA)^2-(1-cosecA)^2)`
= `(cot^2A+1+cosec^2A-2cotA-2cosec A+2cotAcosec A)/(cot^2A-(1+cosec^2 A-2cosec A))`
= `(2cosec^2 A+2cotAcosec A-2cotA-2cosec A)/(cot^2A-1-1cosec^2 A+2cosec A)`
= `(2cosec A(cosecA+cotA)-2(cotA+cosec A))/(cot^2A-cosec^2A-1+2cosec A)`
= `((cosec A+cotA)(2cosec A-2))/(-1-1+2cosec A)`
= `((cosec A+cotA)(2cosec A-2))/(2cosec A-2)`
= cosec A + cot A
= R.H.S
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Choose the correct alternative:
1 + tan2 θ = ?
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.
Eliminate θ if x = r cosθ and y = r sinθ.
(1 – cos2 A) is equal to ______.