मराठी

Prove the following identities, where the angles involved are acute angles for which the expressions are defined: cosA-sinA+1cosA+sinA-1=cosecA+cotA using the identity cosec2 A = 1 cot2 A. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.

बेरीज

उत्तर

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`

Using the identity cosec2A = 1 + cot2A,

L.H.S = `(cos A-sinA+1)/(cosA+sinA-1)`

= `(cosA/sinA-sinA/sinA+1/sinA)/(cosA/sinA+sinA/sinA+1/sinA)`

= `(cotA-1+cosec  A)/(cotA+1-cosec  A)`

= `({(cotA)-(1-cosec  A)}{(cotA)-(1-cosec  A)})/({(cotA)+(1-cosec  A)}{(cotA)-(1-cosec  A)})`

= `(cot A - 1 + cosecA)^2/((cotA)^2-(1-cosecA)^2)`

= `(cot^2A+1+cosec^2A-2cotA-2cosec  A+2cotAcosec  A)/(cot^2A-(1+cosec^2  A-2cosec  A))`

= `(2cosec^2  A+2cotAcosec  A-2cotA-2cosec  A)/(cot^2A-1-1cosec^2  A+2cosec  A)`

= `(2cosec  A(cosecA+cotA)-2(cotA+cosec  A))/(cot^2A-cosec^2A-1+2cosec  A)`

= `((cosec  A+cotA)(2cosec  A-2))/(-1-1+2cosec  A)`

= `((cosec  A+cotA)(2cosec  A-2))/(2cosec  A-2)`

= cosec A + cot A

= R.H.S

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction to Trigonometry - Exercise 8.4 [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 8 Introduction to Trigonometry
Exercise 8.4 | Q 5.05 | पृष्ठ १९४

संबंधित प्रश्‍न

If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`


Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`


Evaluate without using trigonometric tables:

`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`


Prove the following trigonometric identities.

`cosec theta sqrt(1 - cos^2 theta) = 1`


Prove the following trigonometric identities.

`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`


Prove that

`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`


Prove the following identities:

`cosecA + cotA = 1/(cosecA - cotA)`


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


`cosec theta (1+costheta)(cosectheta - cot theta )=1`


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`


Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`


Write the value of `3 cot^2 theta - 3 cosec^2 theta.`


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2. 


\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identity : 

`((1 + tan^2A)cotA)/(cosec^2A) = tanA`


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m


If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`


Choose the correct alternative:

1 + tan2 θ = ?


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A


Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.


Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`


If x sin3θ + y cos3 θ = sin θ cos θ  and x sin θ = y cos θ , then show that x2 + y2 = 1.


Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.


If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1


If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


Eliminate θ if x = r cosθ and y = r sinθ.


(1 – cos2 A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×