मराठी

`(Sin Theta +Cos Theta )/(Sin Theta - Cos Theta)+(Sin Theta- Cos Theta)/(Sin Theta + Cos Theta) = 2/((Sin^2 Theta - Cos ^2 Theta)) = 2/((2 Sin^2 Theta -1))` - Mathematics

Advertisements
Advertisements

प्रश्न

`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`

उत्तर

We have , `(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) `

      =`((sin theta + cos theta )^2 + (sin theta - cos theta)^2) /((sin theta - cos theta )(sin theta + cos theta))`

     =`(sin^2 theta + cos ^2 theta + 2 sin theta  cos theta + sin^2 theta + cos^2 theta -2 sin theta cos theta)/(sin^2 theta - cos ^2 theta)`

     =`(1+1)/(sin^2 theta - cos^2 theta)`

     =`2/(sin^2 theta - cos^2 theta)`

Again ,` 2/(sin^2 theta - cos^2 theta)`

    =`2/(sin^2 theta -(1-sin^2 theta))`

   =`2/(2 sin ^2 theta -1)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 1

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 1 | Q 29

संबंधित प्रश्‍न

Prove the following identities:

`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`

`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`

`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`


Prove the following trigonometric identities.

`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`


Prove the following identities:

sec2 A . cosec2 A = tan2 A + cot2 A + 2


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A


Prove that:

`cosA/(1 + sinA) = secA - tanA`


`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`


If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1


If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ? 


Prove the following identity : 

`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`


If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`


Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.


Prove the following identities.

`costheta/(1 + sintheta)` = sec θ – tan θ


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


If tan θ × A = sin θ, then A = ?


If tan θ + cot θ = 2, then tan2θ + cot2θ = ?


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×