मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below. Activity: L.H.S = □ = □(1-sin2θtan2θ) = tan2θ(1-□sin2θcos2θ) = tan2θ(1 sin2θ1×cos2θ□) = tan2θ(1-□) = tan2θ×□ ..... - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S

रिकाम्या जागा भरा
बेरीज

उत्तर

L.H.S = tan2θ – sin2θ 

= `tan^2theta (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - (sin^2theta)/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/sin^2theta)`

= `tan^2theta (1 - cos^2theta)`

= tan2θ × sin2θ     .....[1 – cos2θ = sin2θ]

= R.H.S

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Q.3 (A)

संबंधित प्रश्‍न

Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`


Prove the following identities:

(1 – tan A)2 + (1 + tan A)2 = 2 sec2A


Show that : tan 10° tan 15° tan 75° tan 80° = 1


Prove the following identities:

(1 + tan A + sec A) (1 + cot A – cosec A) = 2


If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.


Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`


If `cosec  theta = 2x and cot theta = 2/x ," find the value of"  2 ( x^2 - 1/ (x^2))`


Prove that:

`"tanθ"/("secθ"  –  1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`


Prove the following identity : 

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove the following identities:

`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`


Prove the following identity : 

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`


If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`


Without using trigonometric table , evaluate : 

`cosec49°cos41° + (tan31°)/(cot59°)`


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×