Advertisements
Advertisements
प्रश्न
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
उत्तर
L.H.S = `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2`
= `(1 + sin^2theta + cos^2theta + 2sintheta - 2sintheta cos theta - 2costheta)/(1 + sin^2theta + cos^2theta + 2sintheta + 2sintheta costheta + 2costheta)`
= `(1 + 1 + 2sintheta (1 - cos theta) - 2cos theta)/(1 + 1 + 2sin theta + 2cos theta (sin theta + 1))`
= `(2(1 - cos theta) + 2sintheta (1 - cos theta))/(2(1 + sin theta) + 2cos theta(1 + sin theta))`
= `(2(1 - costheta)(1 + sintheta))/(2(1 + sintheta)(1 + costheta))`
= `((1 - cos theta))/((1 + cos theta))`
L.H.S = R.H.S
Hence it is proved.
APPEARS IN
संबंधित प्रश्न
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
sec θ when expressed in term of cot θ, is equal to ______.