Advertisements
Advertisements
प्रश्न
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
उत्तर
L.H.S. = `sinAcosA - (sinAsinAcosA)/(cosecA) - (cosAcosAsinA)/secA`
= sin A cos A – sin2 A cos A sin A – cos2 A sin A cos A
= sin A cos A – sin3 A cos A – cos3 A sin A
= sin A cos A [1 – sin2 A – cos2 A]
= sin A cos A [1 – (sin2 A + cos2 A)]
= sin A cos A (1 – 1)
= sin A cos A × 0
= 0 = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
What is the value of (1 − cos2 θ) cosec2 θ?
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
Show that tan4θ + tan2θ = sec4θ – sec2θ.