Advertisements
Advertisements
प्रश्न
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
उत्तर
Here,
m2 - n2 = (tan A + sin A)2 - (tan A - sin A)2
m2 - n2 = ( tan A + sin A + tan A - sin A )( tan A + sin A - tan A + sin A)
m2 - n2 = (2 tan A)(2 sin A)
m2 - n2 = 4 tan A sin A ....(1)
Also,
`4 sqrt(mn) = 4sqrt((tan A + sin A)( tan A - sin A))`
= 4 `sqrt(tan^2 A - sin^2 A)`
= 4 `sqrt((sin^2 A)/(cos^2 A) - sin^2 A)`
= `4 sin A sqrt((1 - cos^2 A)/(cos^2 A))`
= `4 sin A sqrt((sin^2 A)/(cos^2 A))`
= `4 sin A sqrt((sin A)/(cos A))`
= 4 sin A. tan A ....(2)
Using equation (1) and equation (2) we get the required conditions.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If `secθ = 25/7 ` then find tanθ.
(sec A + tan A) (1 − sin A) = ______.
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
If tan θ = `x/y`, then cos θ is equal to ______.