Advertisements
Advertisements
प्रश्न
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
उत्तर
cos A = `(2sqrt("m"))/("m" + 1)` ......[Given]
We know that,
sin2A + cos2A = 1
∴ `sin^2"A" + ((2sqrt("m"))/("m" + 1))^2` = 1
∴ `sin^2"A" + (4"m")/("m" + 1)^2` = 1
∴ sin2A = `1 - (4"m")/("m" + 1)^2`
= `(("m" + 1)^2 - 4"m")/("m" + 1)^2`
= `("m"^2 + 2"m" + 1 - 4"m")/("m" + 1)^2` ......[∵ (a + b)2 = a2 + 2ab + b2]
= `("m"^2 - 2"m" + 1)/("m" + 1)^2`
∴ sin2A = `("m" - 1)^2/("m" + 1)^2` ......[∵ a2 – 2ab + b2 = (a – b)2]
∴ sin A = `("m" - 1)/("m" + 1)` .....[Taking square root of both sides]
Now, cosec A = `1/"sin A"`
= `1/(("m" - 1)/("m" + 1))`
∴ cosec A = `("m" + 1)/("m" - 1)`
APPEARS IN
संबंधित प्रश्न
Prove that `cosA/(1+sinA) + tan A = secA`
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
cos4 A − sin4 A is equal to ______.
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Choose the correct alternative:
sec 60° = ?
Prove that cot2θ × sec2θ = cot2θ + 1
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.